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Several important issues pertaining to dispersion and polydispersity of droplets in
turbulent flows are investigated via direct numerical simulation (DNS). The carrier
phase is considered in the Eulerian context, the dispersed phase is tracked in the
Lagrangian frame and the interactions between the phases are taken into account
in a realistic two-way (coupled) formulation. The resulting scheme is applied for
extensive DNS of low-Mach-number, homogeneous shear turbulent flows laden with
droplets. Several cases with one- and two-way couplings are considered for both non-
evaporating and evaporating droplets. The effects of the mass loading ratio, the droplet
time constant, and thermodynamic parameters, such as the droplet specific heat, the
droplet latent heat of evaporation, and the boiling temperature, on the turbulence and
the droplets are investigated. The effects of the initial droplet temperature and the
initial vapour mass fraction in the carrier phase are also studied. The gravity effects
are not considered as the numerical methodology is only applicable in the absence of
gravity. The evolution of the turbulence kinetic energy and the mean internal energy
of both phases is studied by analysing various terms in their transport equations.
The results for the non-evaporating droplets show that the presence of the droplets
decreases the turbulence kinetic energy of the carrier phase while increasing the level
of anisotropy of the flow. The droplet streamwise velocity variance is larger than
that of the fluid, and the ratio of the two increases with the increase of the droplet
time constant. Evaporation increases both the turbulence kinetic energy and the
mean internal energy of the carrier phase by mass transfer. In general, evaporation
is controlled by the vapour mass fraction gradient around the droplet when the
initial temperature difference between the phases is negligible. In cases with small
initial droplet temperature, on the other hand, the convective heat transfer is more
important in the evaporation process. At long times, the evaporation rate approaches
asymptotic values depending on the values of various parameters. It is shown that
the evaporation rate is larger for droplets residing in high-strain-rate regions of the
flow, mainly due to larger droplet Reynolds numbers in these regions. For both the
evaporating and the non-evaporating droplets, the root mean square (r.m.s.) of the
temperature fluctuations of both phases becomes independent of the initial droplet
temperature at long times. Some issues relevant to modelling of turbulent flows laden
with droplets are also discussed.
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1. Introduction
A complex issue in the theoretical description of turbulent flows is the phenomena

of ‘dispersion’ and ‘polydispersity’ of liquid droplets (Faeth 1983, 1987; Williams
1985). With the presence of such droplets in a carrier turbulent fluid, the additional
physical complexities due to multiphase transport including the couplings between
the various phases, make the mathematical description of the problem very complex.
Due to its physical nature, the mechanism of dispersion is best understood when
analysed in the Lagrangian context (Taylor 1921; Corrsin 1961). This alone makes
investigation via numerical simulations very convenient.

The implementation of direct numerical simulation (DNS) in two-phase flows to
investigate the dispersion of particles in decaying isotropic turbulence was pioneered
by Riley & Patterson (1974). Using a low-resolution simulation (323 grid points) and
a relatively small number of particles (432), they found that an increase of the particle
inertia increases the velocity autocorrelation. McLaughlin (1989) simulated particle
deposition in a channel flow and showed the tendency of particles to accumulate
in the viscous sublayer. Squires & Eaton (1990, 1991a, b) simulated both stationary
and decaying turbulence fields with one- and two-way coupling. The results show the
increase of the eddy diffusivity of heavy particles over that of the fluid particle for
cases with one-way coupling. In the cases with two-way coupling they found that the
fraction of energy at high wavenumbers of the spatial energy spectrum of turbulence
increases relative to that at low wavenumbers as the mass loading ratio is increased.
They also found that large particles tend to collect preferentially in regions of low
vorticity and high strain. Later, Squires & Eaton (1994) used the data generated by
these simulations to investigate some issues relevant to turbulence modifications by
particles. They examined the values used for the empirical constants appearing in
the transport equation for the dissipation rate of the fluid turbulence kinetic energy.
Elghobashi & Truesdell (1992, 1993); Truesdell & Elghobashi (1994) conducted similar
studies. They considered the full equation for the particle motion and showed that
for large density ratios the Stokes drag is of primary importance. In the presence of
both gravity and two-way coupling they showed that energy is transferred from the
gravity direction to other directions by the pressure–strain correlation.

The settling velocity of heavy particles in isotropic turbulence was studied by
Wang & Maxey (1993) for different particle time constants and drift velocities. The
results show an increase of the settling velocity for all cases. The maximum increase
in settling velocity is obtained when both the particle time constant and the drift
velocity are comparable to the Kolmogorov scales. Samimy & Lele (1991) studied
the motion of heavy particles in a compressible free shear flow using a compact
finite difference scheme. They concluded that, for the range of convective Mach
numbers between 0.2 and 0.6, compressibility does not significantly affect the motion
of the particles. Mashayek et al. (1997a) studied dispersion and polydispersity of
evaporating droplets in incompressible, stationary, isotropic turbulent flows. Later,
Mashayek (1998) relaxed the one-way coupling assumption invoked in Mashayek
et al. (1997a) and investigated dispersion of evaporating droplets in a compressible
carrier phase. These studies have been very instructive in exhibiting many important
features of dispersion and polydispersity in ‘isotropic’ flows. In the present study, we
consider a homogeneous shear configuration which is very convenient for investigating
the anisotropy effects.

In order to fully consider a two-way coupling between the evaporating droplets and
the carrier phase, it is necessary to account for density variations in the carrier phase.
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This is accomplished by considering the compressible flow, although a study of high-
compressibility effects is not intended. The literature is very rich in both theoretical
and computational studies of (single-phase) compressible flows. An extensive review
of the previous works is not included; we refer to Blaisdell, Mansour & Reynolds
(1993) for a recent review. Here, we are more concerned with the computational
methodologies implemented for direct numerical simulations of compressible flows.
It appears that high-order finite difference (e.g. Lee, Lele & Moin 1991) and spectral
collocation methods are more popular than other schemes. Although spectral methods
are more accurate and simple, they have difficulties in capturing sharp discontinuities
(such as shocklets) in the solution domain. To overcome this shortcoming, one has
either to use a very high-resolution grid (in the order of eight grid points per
discontinuity (Passot & Pouquet 1987), or to consider only low Mach numbers such
that the flow remains free of shocklets. The most common set of equations considered
for compressible flows involve the conservation equations for mass, momentum, and
total energy (Kida & Orszag 1990, 1992; Blaisdell et al. 1993; Miura & Kida 1995).
Alternatively, an equation may be considered for the pressure instead of the total
energy equation (Sarkar, Erlebacher & Hussaini 1991, 1992; Sarkar 1994). The choice
of the fourth (the total energy or the pressure) equation depends on the problem
under investigation.

The objective of this work is to perform an extensive DNS study of the dispersion
and polydispersity of droplets in low-Mach-number homogeneous shear turbulent
flows. The specific objectives are: (i) to develop a realistic formulation (suitable for
DNS) that accounts for interactions between the two phases, (ii) to identify and to
investigate the effects of the parameters that influence the fate of the droplets and
the flow, (iii) to make use of the DNS results to identify various mechanisms by
which the two phases most effectively interact, (iv) to enhance our understanding
of the evaporation phenomena in two-phase turbulent flows, and (v) to perform a
comparative assessment of the effects of evaporation on the statistics of the flow
and the droplets via comparisons between the results of the cases with evaporating
and non-evaporating droplets. Furthermore, some issues of relevance to modelling
of two-phase flows are considered. It must be emphasized here that due to the
complexity of the problem, the number of parameters influencing the two-phase flow
is large. Since there is no previous study of evaporating droplets interacting with a
compressible flow, it is not clear which group of parameters are more important than
the others. In fact, the level of importance of a particular parameter may depend on
the physical phenomenon under consideration. Therefore, the present study considers
a large number of parameters with limited ranges of variation rather than focusing
on one or two parameter(s) with wide range(s) of variation. The results of this study
can be used to efficiently (design and) conduct more focused future investigations
on this subject. In § 2 the problem formulation is provided followed by a description
of the computational methodology in § 3. The results of the simulations of the non-
evaporating and evaporating droplets are presented and discussed in §§ 4 and 5,
respectively. A summary of this study is furnished in § 6, along with some concluding
remarks.

2. Problem formulation
This work deals with DNS of homogeneous turbulent shear flow of a compressible

gas laden with droplets. The governing equations considered here are the compressible
forms of the continuity, momentum, and energy equations for the continuous phase
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coupled with the Lagrangian equations for discrete droplets. Also, a conservation
equation (in the Eulerian frame) is considered for the vapour mass fraction. For
simplicity, the vapour is assumed to have the same molecular weight, viscosity, mass
diffusivity, and specific heat as those of the gas. In this manner, the gas–vapour
mixture (hereinafter also referred to as the carrier phase or the fluid) is treated as
one entity – the continuity, momentum, and energy equations are solved for the
gas–vapour mixture. The specific enthalpy of the vapour, however, is considered to be
different than that of the gas in order to satisfy the first law of thermodynamics. In the
following, we present the equations for the continuous and the dispersed phases along
with a discussion of the numerical treatment of these equations in a homogeneous
shear configuration.

2.1. Gas–vapour equations

The carrier phase (composed of the gas and the vapour) is considered to be a
compressible and Newtonian fluid with zero bulk viscosity, and to obey the perfect
gas equation of state. The instantaneous density, velocity, pressure, and temperature
of the carrier phase are denoted by ρ, Ui, P , and T , respectively. The instantaneous
vapour mass fraction is denoted by Y . With this nomenclature, the Eulerian forms
of the non-dimensional continuity, momentum, and energy equations for the carrier
phase are given by

∂ρ

∂t
+

∂

∂xj
(ρUj) =Sm, (1)
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and the conservation equation for the vapour mass fraction is described as

∂

∂t
(ρY ) +

∂

∂xj
(ρY Uj) =

1

RefSc

∂2Y

∂xj∂xj
+Sm. (4)

The total energy (ET ) is the summation of the sensible internal energy (ρCvT , where
Cv is the specific heat of the carrier phase) and the kinetic energy ( 1

2
ρUiUi) of the

gas–vapour mixture. The equation of state is P = ρT/γM2
f . In the above equations,

∆ = Uj,j is the dilatation (Ui,j = ∂Ui/∂xj), Sij = 1
2
(Ui,j + Uj,i) is the rate-of-strain

tensor, and δij is the Kroenecker delta function. All of the variables are normalized
by reference length (Lf), density (ρf), velocity (Uf), and temperature (Tf) scales. The
reference Reynolds and Mach numbers are Ref = ρfUfLf/µ and Mf = Uf/(γRTf)

1/2,
respectively, and the Prandtl and Schmidt numbers are given by Pr = Cpµ/κ and
Sc = µ/ρΓ , respectively. In these definitions, the carrier-phase variables µ, κ, Cp, γ,
and R are the viscosity, the thermal conductivity, the specific heat, the ratio of the
specific heats, and the gas constant, respectively, and Γ is the binary mass diffusivity
coefficient. The specific enthalpies for the gas and the liquid are described as hg = T
and h` = σT , respectively, where σ = C`/Cp with C` denoting the specific heat of
the liquid. For evaporating droplets we only consider the case with σ = 1 for which
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the specific enthalpy of the vapour is expressed as hv = T + λ with λ = Lv/CpTf
and Lv representing the latent heat of evaporation. All the enthalpies are normalized
by CpTf . The total energy equation (3) is derived by assuming unity Lewis number
(Le ≡ Sc/Pr = 1). The coupling of the carrier phase with the droplets is through the
terms Sm, Sui, and Se which describe the mass, momentum, and energy exchange
between the phases, respectively. The formulation of these terms and their calculation
from the discrete droplet fields are described in § 2.4.

2.2. Droplet equations

The droplets are allowed to evaporate and are assumed to remain spherical with
diameter smaller than the smallest length scale of the turbulence and to exhibit an
empirically corrected Stokesian drag force. Both interior motions and rotation of
the droplets are neglected. The density of the droplets is considered to be constant
and much larger than the density of the carrier phase such that only the inertia,
the drag, and the gravity forces are significant for the droplet dynamics. As will
be discussed in § 2.3, the numerical methodology used in this study to simulate the
homogeneous shear particle-laden flow is only applicable in the absence of gravity;
therefore, buoyancy effects are not considered. In addition, the droplet volume fraction
is assumed to be relatively small and both droplet–droplet interactions and heat
transfer due to radiation are neglected. The droplets are tracked individually in a
Lagrangian manner, and the instantaneous droplet position, velocity, temperature,
and mass are given by Xi, Vi, Td and md, respectively. With this nomenclature, the
non-dimensional Lagrangian equations describing the droplet dynamics are (Crowe,
Sharma & Stock 1977)

dXi

dt
= Vi, (5)

dVi
dt

=
f1

τd
(U∗i − Vi), (6)

dTd
dt

=
f2

τd
(T ∗ − Td)−

f3

τd
(Ys − Y ∗), (7)

and
dmd
dt

= −f4τ
1/2
d (Ys − Y ∗), (8)

where the superscript * indicates the value of a carrier-phase variable at the droplet
location, and Ys is the vapour mass fraction at the surface of the droplet.

The non-dimensional droplet time constant, based on the Stokesian drag of a
sphere, is

τd =
Refρdd

2
d

18
, (9)

where dd and ρd are the droplet diameter and density, respectively. The droplet
variables are normalized using the same reference scales as those used for the carrier-
phase variables. The function f1 in (6) represents an empirical correction to the Stokes
drag due to droplet Reynolds numbers of order unity and larger (Wallis 1969) and is
valid for droplet Reynolds numbers Red 6 1000 (Red = Refρ

∗dd|U∗i − Vi|):

f1 =
1 + 0.15Re0.687

d

1 + B
, (10)
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where B = (T ∗ − Td)/λ is the transfer number. It is noted that B is a modification
due to evaporation, therefore for non-evaporating droplets B ≡ 0.

The droplets are assumed ‘lumped’, so that there is no temperature variation within
each droplet. The first term on the right-hand side of (7) represents the rate of change
of the droplet temperature due to convective heat transfer with the carrier phase. The
factor f2 represents a correlation for the convective heat transfer coefficient based on
an empirically corrected Nusselt number (Nu = (2 + 0.6Re0.5

d P r
0.33)/(1 + B)) (Bird,

Stewart & Lightfoot 1960):

f2 =
Nu

3Prσ
. (11)

The second term on the right-hand side of (7) represents the change in the droplet
internal energy due to phase change. The correlation f3 is a function of an empirically
corrected Sherwood number (Sh = 2+0.6Re0.5

d Sc
0.33) and is given by (Bird et al. 1960)

f3 =
ρ∗Sh

3Sc

λ

σ
. (12)

The vapour mass fraction at the surface of the droplet is equal to the vaporization
pressure (Pvap) of the droplet (for equivalent molecular weights of the gas and the
liquid) and obeys the Clausius–Clapeyron equation

Ys = Pvap = exp

[
γλ

(γ − 1)TB

(
1− TB

Td

)]
, (13)

where the boiling temperature of the liquid (TB) is assumed to be independent of the
pressure (i.e. constant). Finally, (8) governs the rate of mass transfer from the droplet
due to evaporation which is a function of the vapour mass fraction difference at
the droplet surface, the droplet time constant, and the Sherwood-number-dependent
correlation:

f4 = π

(
18

ρd

)0.5
ρ∗Sh

Re1.5
f Sc

. (14)

2.3. Formulation for homogeneous shear configuration

To configure a homogeneous shear flow suitable for DNS, a linear mean velocity
profile is applied to a zero mean turbulent velocity field. Therefore, the carrier-phase
instantaneous velocity is expressed as Ui = Sx2δi1 + ui, where ui is the carrier-phase
fluctuating velocity. The magnitude of the imposed shear is given by the amplitude of
the mean velocity gradient, S = ∂〈U1〉/∂x2 = const., where 〈 〉 indicates the Eulerian
ensemble average over the number of grid points. For homogeneous flows which
either start from isotropic initial conditions or develop to become independent of the
initial conditions, Blaisdell, Mansour & Reynolds (1991) show that the Favre-average
fluctuating quantity is the same as the Reynolds average one. In this study we indicate
the fluctuating quantity with the same notation for both types of averaging; the type
of averaging is understood from the context. The primary effect of the mean shear
is to provide a natural (albeit idealistic) homogeneous forcing. No stationary state
is achieved, and the Reynolds number grows until the turbulence structures outgrow
the box size, at which time the simulation is stopped.

In order to employ the Fourier spectral method, periodic boundary conditions must
be imposed. This is accomplished by solving the governing equations for fluctuating
velocities on a grid which deforms with the mean flow. This transformation has
been discussed in detail by Rogallo (1981) and Blaisdell et al. (1991) and is only
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summarized here. A computational (deforming) coordinate system (x′i) is related to
the fixed (non-deforming) system through x′i = Qijxj where the transformation tensor
is defined as

Qij =

 1 −St 0
0 1 0
0 0 1

 , (15)

for the present conditions. Performing the transformation on (1)–(4) and dropping
the superscript ′ on the coordinates, the governing equations in the transformed
coordinates are
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∂
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(ρY ) + Qkj

∂
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QkiQji

RefSc

∂2Y

∂xk∂xj
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where ∆ = Qjiui,j , and eT = ρCvT + 1
2
ρuiui.

In the absence of gravity or other external body forces and by assuming that
the droplets start from the same initial velocities as those of their surrounding fluid
elements, the droplet instantaneous velocity is described as (Simonin, Deutsch &
Boivin 1995) Vi = Sx2δi1 + vi, with vi denoting the droplet fluctuating velocity. By
performing ensemble averaging on the droplet instantaneous equations, it can be
shown that the dispersed phase is homogeneous within the deforming domain used
to simulate the carrier phase; thus, periodic boundary conditions can be applied to
the dispersed phase as well. The droplet position and momentum equations in the
transformed coordinates read

dXi

dt
= Qikvk, (20)

dvi
dt

=
f1

τd
(u∗i − vi)− v2Sδi1. (21)

The equations for the scalar quantities Td and md remain the same as those given by
(7) and (8).

2.4. Coupling terms

The source/sink termsSm,Sui, andSe appearing in (16)–(19) represent the integrated
effects of the droplet mass, momentum, and energy exchange with the carrier phase.
These Eulerian variables are calculated from the Lagrangian droplet variables by



170 F. Mashayek

volume averaging the contributions from all of the individual droplets residing within
the cell volume (δV = (δx)3, where δx is the node spacing) centred around each grid
point. In the deforming coordinates, these terms are expressed as

Sm = − 1

δV

nd∑ dmd
dt

, (22)

Sui = − 1

δV

nd∑[
mdf1

τd
(u∗i − vi) +

dmd
dt

vi

]
, (23)
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1

δV
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σ

(γ − 1)M2
f

d

dt
(mdTd)−

λ

(γ − 1)M2
f

dmd
dt

+
mdf1

τd
(u∗i − vi)vi+

dmd
dt

(
1
2
vivi
)]
,

(24)

where σ = 1 for evaporating droplets. In these equations, nd is the number of droplets
within the cell volume and those cells with nd = 0 are assigned a zero value for each
variable.

Equation (22) simply considers the evaporated mass of the droplets as the source
term for the carrier-phase continuity and the vapour mass fraction equations. The
momentum source terms given in (23) account for the momentum transfer due to
drag and the momentum carried to the carrier phase by the evaporated mass. The
first term on the right-hand side of (24) is due to the change in the internal energy
of the droplets which contributes to the carrier-phase internal energy with a negative
sign. By manipulating (7) and (8), it is easy to show that d(mdTd)/dt represents the
exchange of the internal energy by convective heat transfer in addition to the internal
energy carried to the carrier phase by vapour. The second term on the right-hand
side of (24) subtracts the contribution of the latent heat as the energy equation (3)
is described for the sensible internal energy of the carrier phase only. The last two
terms on the right-hand side of (24) represent the energy transfer by drag and by
the evaporated mass. The exact contributions of these terms to internal and kinetic
energies of the carrier phase are discussed in § 4.

It is noted that the source/sink terms described by (22)–(24) reduce to those for non-
evaporating droplets (i.e. solid particles) by simply inserting dmd/dt = 0. The equations
presented in this section for the Eulerian–Lagrangian system are in agreement with
the analogous equations presented in the Eulerian–Eulerian framework by Jackson
& Davidson (1983).

3. Computational methodology and initializations
Simulations are conducted within the domain 0 6 xi 6 2π. A Fourier pseu-

dospectral (Givi & Madnia 1993) method with triply periodic boundary conditions is
employed for the spatial representation of the carrier-phase variables and the vapour
mass fraction. All calculations are performed in Fourier space with the exception
of the nonlinear terms. Aliasing errors are treated by truncating energies outside
a spherical wavenumber shell having radius

√
2N/3 (where N is the number of

grid points in any direction) and time advancement is performed using an explicit
second-order-accurate Adams–Bashforth method. The mean shear imposed by the
grid transformation skews the grid in time. In order to allow the simulation to
progress for a substantial time, it is necessary to remesh the grid at regular time
intervals. The remeshing procedure is similar to that used by Rogallo (1981). The grid
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begins in an initial orthogonal state and proceeds to skew in the (x1, x2)-plane. At a
time of St = 0.5 the grid is then remeshed back to a hypothetical St = −0.5 grid.
The fluid variables are then re-calculated onto the new mesh by use of the periodic
boundary condition. The choice of time for the remesh process is optimal for the
initially cubic domain such that no interpolation is required. After the remeshing,
the variables are truncated in Fourier space outside the spherical wavenumber shell
of magnitude

√
2N/3. This results in a slight loss of kinetic energy; however, if the

simulation is well resolved (i.e. only relatively small energies are present in the highest
wavenumber bands) this truncation is considered to be negligible. The simulation is
then allowed to proceed until the next remesh time is reached, St = 0.5, 1.5, 2.5, . . ., or
until the length scales of the turbulence become too large to be accurately resolved,
at which time the simulation is terminated.

As discussed in § 2.3, the dispersed phase is homogeneous within the same do-
main used for simulating the carrier phase. Once the carrier phase is simulated, the
Lagrangian droplet equations are advanced in time using the second-order-accurate
Adams–Bashforth method. To evaluate the carrier-phase variables at the droplet loca-
tion a fourth-order-accurate Lagrange polynomial interpolation scheme is employed.
The accuracy of the interpolation scheme has been tested via comparisons made
with the exact values calculated using the full spectral description (Balachandar &
Maxey 1989). Periodic boundary conditions are applied to the dispersed phase; when
a droplet leaves the domain from one side, it is returned to the box from the opposite
side. This is possible as the dispersed phase is also homogeneous in the deforming
coordinate. Periodicity of the dispersed phase is also used at the time of remeshing to
transform the droplets to the new mesh. The X1- and X2-coordinates remain the same,
whereas X+

1 = X−1 +X2 is used to determine the droplet position after remeshing (X+
1 )

in terms of its position before remeshing (X−1 ) in the streamwise direction. In evap-
orating cases, once the droplet time constant falls below 0.1 the droplet is removed
from the simulation to avoid excessive computational requirements for tracking very
small droplets; no droplet is substituted for the removed droplet. The total number of
remaining droplets, however, is monitored to ensure that the Lagrangian statistics are
accurate. For all of the cases considered in this study, the total number of droplets
used for Lagrangian statistics is always larger than 1.5 × 105. Following Yeung &
Pope (1988), the statistical sampling error decreases as N

1/2
d ; using 1.5× 105 droplets

results in less than 0.3% error.

The initial conditions for the flow are fixed for all of the simulations and changes
in the flow conditions are only due to interactions with droplets. The density and
velocity fields are initialized as random Gaussian, isotropic, and solenoidal fields
in Fourier space. The initial temperature field has no fluctuations and the initial
pressure field is calculated using the equation of state. The initial spectrum, for both
density and velocity, has a box-type shape with non-zero and constant value only for
8 < K < 16 where K is the wavenumber. The initial mean gas density and mean gas
temperature are used as the reference scales for density and temperature, respectively.
The reference Mach number is Mf = 1; therefore, the speed of sound based on
the initial mean gas temperature is the reference scale for the velocity. Other fixed
parameters are: Ref = 500, Pr = Sc = 0.7, γ = 1.4, S = 2, and ρd = 500.

The droplets are randomly distributed in the flow at St = 0 with the same velocity
as that of their surrounding fluid. Different initial temperatures are considered for
the droplets in order to study the effects of the temperature difference between the
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phases on the flow and the droplets. Both cases of non-evaporating and evaporating
droplets are considered with either one- or two-way coupling. For evaporating cases,
the droplets begin to evaporate at St = 2 when the carrier-phase turbulence kinetic
energy starts to grow. The condition of one- or two-way coupling, however, is imposed
from St = 0 for respective cases. The total number of droplets (Nd) tracked in each
simulation is determined from the given values of the droplet time constant and the
mass loading ratio. For the one-way coupling case the mass loading ratio is not a
relevant parameter. For this case the number of droplets used is the same as that
considered for the corresponding two-way coupling case.

The code has been carefully tested by performing the laminar flow test, and by
comparisons made with the results of the previous work on single-phase compressible
flows by Blaisdell et al. (1991). The details of these tests are not presented here for
brevity. Also, in the presentation of the results we, frequently, consider the budget of
the energy for each of the phases and show that the DNS results accurately balance
the left- and right-hand sides of both the kinetic and the internal energy equations.
All of the simulations are performed on 963 collocation points with a time step of
2.5 × 10−3, and are continued till the non-dimensional time St = 14. The CPU time
(on a Cray-C90) is 8.9 s per iteration for evaporating cases in two-way coupling with
3.1 × 105 droplets. The memory required for this case is 46 Mw. We consider the
highest possible Reynolds number without jeopardizing the small-scale resolution for
all of the fields. The flow field (without the droplets) used for this study has similar
characteristics to those simulated by Blaisdell et al. (1993) at the same grid resolution
and initial r.m.s. turbulence Mach number of 0.2. However, the Reynolds number
is smaller in this study – the Taylor-microscale Reynolds number in the streamwise
direction varies between ∼ 15 at St = 2 and ∼ 70 at St = 14. This is necessary as
we are dealing with evaporating droplets and so their sizes decrease to small values
in time. As the sizes of the droplets decrease they interact with smaller scales of the
flow, therefore it is important to accurately resolve the small scales. This has been
ensured by keeping the value of the resolution parameter ηkmax (η is the Kolmogorov
length scale and kmax is the highest wavenumber resolved) larger than 1.4 throughout
the simulations.

Due to the large number of parameters involved in the problem, a detailed para-
metric study is not possible. Instead, we perform a case study to compare the effects
of variation of each parameter on the statistics of the flow and the droplets. We
consider a ‘base case’ (indicated by subscript b) for each set of parameters and for
each of the other cases within that set we vary one of the parameters with respect to
its base value.

4. Non-evaporating droplets
An inspection of the formulation in § 2 identifies the significant parameters for the

non-evaporating droplets as the droplet time constant (τd), the mass loading ratio
(Φm), the ratio of the droplet and the carrier-phase specific heats (σ), and the initial
droplet temperature (Td0). Table 1 shows a listing of the cases considered to study
the effects of these parameters. The base case is indicated with boldface in the table.
Also shown in table 1 are values of τd/τk (τk is the Kolmogorov time scale) and
dd/η at St = 2 and St = 13. For all of the cases, dd/η varies between 0.2 and 0.3.
Therefore, it is reasonable to use Stokes drag equation for the droplets as the flow
field around each droplet can be considered uniform. The values of τd/τk are useful
in identifying the scales of the flow which are more effectively interacting with the
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τd Φm σ Td0 Coupling Nd × 10−5 τd/τk
† dd/η

† 〈〈Red〉〉†

1 0.1 1 1 2-way 1.55 2.41→ 1.99 0.295→ 0.268 0.600→ 0.331
0.65 0.1 1 1 2-way 2.96 1.57→ 1.32 0.237→ 0.218 0.384→ 0.201
1 0.2 1 1 2-way 3.10 2.40→ 1.89 0.294→ 0.261 0.595→ 0.302
1 0.1 2 1 2-way 1.55 2.41→ 1.99 0.295→ 0.267 0.600→ 0.330
1 0.1 1 0.2 2-way 1.55 2.42→ 1.95 0.295→ 0.265 0.611→ 0.317
1 – 1 1 1-way 1.55 2.43→ 2.14 0.296→ 0.278 0.616→ 0.376

† Values are given at St = 2 and St = 13.

Table 1. Cases considered for the study of non-evaporating droplets. The base case is shown by
boldface.
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Figure 1. Turbulence kinetic energy of the carrier phase for cases with non-evaporating droplets.

droplets (Hinze 1972). Table 1 also shows that the Lagrangian ensemble average (〈〈 〉〉)
droplet Reynolds number is less than unity for all of the cases.

4.1. Velocity fields

The temporal evolution of the turbulence kinetic energy of the carrier phase (k =
1
2
〈ρuiui〉) is shown in figure 1. There is an initial decay in the turbulence kinetic energy

due to the absence of the off-diagonal (shear) Reynolds stress as the initial velocity
field is isotropic. This stress, along with the mean velocity gradient, is responsible
for the production of the Reynolds stress in the streamwise direction. Once the
shear Reynolds stress component is produced by the action of the mean velocity
gradient, the kinetic energy starts to increase (St > 2). The primary effect of the
droplets is to decrease the carrier-phase turbulence kinetic energy with respect to its
single-phase value. In order to explain the trends observed in figure 1, the transport
equation for the carrier-phase turbulence kinetic energy (in homogeneous flows) is
considered:

∂k

∂t
= 〈p∆〉+P− ε+ Dd +Md, (25)

where 〈p∆〉 is the pressure–dilatation correlation, P = −〈ρu1u2〉 is the production by
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the mean velocity gradient, ε is the dissipation rate of the turbulence kinetic energy,
and

Dd = −
〈

1

δV

nd∑[
f1md

τd
(u∗i − vi)u∗i

]〉
(26)

and

Md = −
〈

1

δV

nd∑ dmd

dt

[
1
2
u∗i u

∗
i − (u∗i − vi)u∗i

]〉
(27)

indicate the droplet contributions. Note that for non-evaporating droplets Md ≡ 0.
The evolution of the other terms in (25) is discussed below.

First, we consider the pressure–dilatation correlation. This term makes no contri-
bution to the change of the total energy of the carrier phase and it is only responsible
for the exchange of energy between kinetic and internal modes. The results of the
simulations (not shown) indicated that 〈p∆〉 oscillates in time with relatively large
amplitudes; therefore, a clearly observable effect of the pressure–dilatation term is to
produce temporal oscillations in the kinetic energy (figure 1). This observation is in
agreement with the results of isotropic (stationary or decaying) (Kida & Orsza 1990,
1992), and homogeneous shear (Sarkar 1992) simulations. An inspection of 〈p∆〉 for
different cases indicated that, at the same mass loading ratio, the decrease of the
droplet time constant slightly decreases the amplitude of the oscillations of 〈p∆〉 at
long times. This is despite the fact that in figure 1 the turbulence kinetic energy is
larger for the flow laden with smaller droplets, and is due to the presence of a larger
number of droplets as compared to the base case. As figure 1 shows, the overall effect
of the droplets is to decrease the turbulence fluctuations. The increase of the number
of droplets in the flow damps the fluctuations more uniformly in space and results in
smaller values for the pressure–dilatation correlation. The increase of the mass loading
ratio also tends to diminish the oscillations of the pressure–dilatation correlation due
to both the larger number of droplets and the decrease of the velocity fluctuations.
The strongest modifications in 〈p∆〉 was observed for the case with small initial droplet
temperature for which both the amplitude and the frequency of the oscillations were
different than those in the base case. This is expected as the increase of the temperature
difference between the droplets and the carrier phase results in local modifications of
the density of the carrier phase and increases the spatial variations of the dilatation.

For a constant mean velocity gradient, the production term P is proportional to the
shear Reynolds stress 〈ρu1u2〉. The temporal variation of this stress (normalized with
the twice of the turbulence kinetic energy) is shown in figure 2. It is observed that,
for cases with the same mass loading ratio, the shear stress decreases proportionally
to the decrease of the turbulence kinetic energy. As discussed below, the presence of
the droplets increases the total dissipation, which results in a decrease of the velocity
fluctuations and, therefore, 〈ρu1u2〉. Figure 2 also indicates that the magnitude of the
normalized shear stress decreases with the increase of the mass loading ratio.

Next, we consider the variations of the dissipation rate of the turbulence kinetic
energy for different cases. In compressible flows, it is useful to decompose the total
dissipation rate (ε) into incompressible (εI ) and compressible (εC) parts which are
defined as

εI =
1

Ref
〈ωiωi〉, εC =

4

3

1

Ref
〈∆2〉, (28)

where ωi is the fluctuating vorticity vector. Figure 3 shows the temporal variations
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Figure 2. Normalized shear stress of the carrier phase.

of the total dissipation and its compressible part. These quantities are normalized by
the total dissipation (ε1) of the clean (droplet-free) flow. In this manner, the deviation
of ε/ε1 from unity is a measure of the total effect of the droplets on the dissipation
rate. Notice that the curves for εC/ε1 have been shifted by 0.3 to avoid confusion
with the curves for Dd/ε1. Both the total dissipation rate and its compressible part
decrease with the increase of the mass loading ratio. This is due to the decrease of
the velocity fluctuations with the increase of the mass loading ratio. An interesting
phenomenon observed in figure 3 is the increase of the compressible (and, therefore,
the total) dissipation rate during the early times for the case with the smaller initial
droplet temperature. This is due to the increase of the spatial fluctuations of the
velocity dilatation in this case. The initial increase of the dissipation rate explains the
smaller growth rate of the turbulence kinetic energy for the case with small initial
droplet temperature (figure 1).

Also shown in figure 3 are the temporal variations of the term Dd which indicates
the effects of drag. It is observed that the increase of the mass loading ratio results in a
significant increase in the magnitude of Dd during the early stages. Therefore, the total
dissipation (due to both the carrier-phase velocity field (ε) and the droplet interaction
(Dd)) increases. This explains the decrease of the growth rate of the turbulence kinetic
energy with the increase of the mass loading ratio. The decrease of the droplet time
constant, at the same mass loading ratio, results in the decrease of the magnitude of
Dd. It is also observed in figure 3 that, at long times, Dd takes positive values indicating
that the droplets tend to enhance the turbulence kinetic energy of the carrier phase.
To explain this phenomenon, Dd is described in terms of Lagrangian correlations.
Assuming a negligible correlation between the fluctuations of f1 and second-order
velocity fluctuations (u∗i u

∗
i and u∗i vi) and noting that Φm = Ndmd/(NδV), it is easy to

show that

Dd ' −Φm
〈〈f1〉〉
τd

(〈〈u∗i u∗i 〉〉 − 〈〈u∗i vi〉〉). (29)

A comparison of Dd values calculated by (26) and (29) indicated that, for the
simulations considered here, these two relations are virtually the same.

The temporal variations of the components of 〈〈u∗i u∗i 〉〉 and 〈〈vivi〉〉 are portrayed
in figure 4 for different values of the droplet time constant and the mass loading
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ratio. The variation of the spanwise (x3-direction) component is similar to that of
the cross-stream (x2-direction) component and is not shown on the figure. Figure 4
shows that the streamwise component of the droplet Reynolds stress is significantly
larger than that of the carrier phase. This may suggest that the term 〈〈u∗i vi〉〉 should
be larger than the term 〈〈u∗i u∗i 〉〉 in (29) and Dd should be positive throughout the
simulations. However, in calculating 〈〈u∗i vi〉〉, the alignment of the droplet velocity
with the carrier phase velocity must be considered. A measure of this alignment is:
cos(u∗i , vi) = 〈〈u∗i vi〉〉/(〈〈(u∗i )2〉〉〈〈v2

i 〉〉)1/2 which is shown in figure 5 for different cases.
This figure indicates that during the early times, u∗i and vi become largely uncorrelated
resulting in the decrease of 〈〈u∗i vi〉〉 to values smaller than 〈〈u∗i u∗i 〉〉. This behaviour is
due to rapid evolution of the flow field during the early times. The droplets (having
large inertia), however, are not capable of promptly responding to these changes in
the flow. For the same reason, the droplets with smaller time constant exhibit a better
alignment with the carrier phase. At long times, the flow field is in an equilibrium state
and it is easier for the droplets to follow the fluid motions, therefore the magnitude
of cos(u∗i , vi) increases.

As mentioned earlier, an interesting feature observed in figure 4 is the increase of
the droplet Reynolds stress in the x1-direction over that of the carrier phase. This is in
agreement with theoretical results of Reeks (1993) and Liljegren (1993) and the LES
results of Simonin et al. (1995) (in incompressible turbulence), and is due to lack of
small-scale dissipation in the dispersed phase as opposed to the carrier phase. In the
x2-direction a crossing point is observed for the curves shown on figure 4 at St ' 3.
The reason is that, at early times, the dispersed-phase Reynolds stress decreases slower
than the fluid one, due to the droplet inertia and small-scale dissipation in the fluid.
At longer times (St > 3), the fluid pressure transfers energy from the streamwise
direction to other directions and causes the increase of the fluid Reynolds stress in
the x2-direction over that of the droplets. It is also shown in the figure that the
large initial values of 〈〈v2v2〉〉 result in large production of the shear component for
the dispersed phase and increases the magnitude of this component to values larger
than those of the fluid. The effect of two-way coupling is realized by comparison of
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Figure 4. Reynolds stress components for the carrier phase and the droplets from non-evaporating
cases: (a) τd = 1, one-way coupling, (b) τd = 1, Φm = 0.1, and (c) τd = 0.65, Φm = 0.1. For the carrier
phase [wiwj] ≡ 〈〈u∗i u∗j 〉〉 and for the droplets [wiwj] ≡ 〈〈vivj〉〉.

figures 4(a) and 4(b). The trends are the same in the two figures; however, at long
times the difference between the normal components of the Reynolds stress of the
dispersed phase is smaller in two-way coupling, due to the indirect effects of the
fluid pressure. Figure 4 (c) indicates that the variation of the droplet time constant
also has strong effects on the Reynolds stress components. Again, in agreement with
previous observations in incompressible flow (Mashayek, Taulbee & Givi 1998a), the
decrease of the droplet time constant results in the decrease of the ratio of the droplet
Reynolds stress to that of the fluid in the streamwise direction. This is in contrast to
the increase of this ratio with the decrease of the droplet time constant in isotropic
flows.

In order to gain further insight into the evolution of the droplet Reynolds stress,
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we consider the transport equation for 〈〈vivj〉〉. This transport equation is obtained
from (21), and in deforming coordinates it reads

d

dt
〈〈vivj〉〉 = −〈〈viv2〉〉Sδ1j − 〈〈v2vj〉〉Sδi1

+

[(〈〈
f1

τd
u∗i vj

〉〉
+

〈〈
f1

τd
u∗j vi

〉〉)
− 2

〈〈
f1

τd
vivj

〉〉]
. (30)

Figure 6 shows the budget of the streamwise and shear components of the droplet
Reynolds stress for the case with τd = 1 and Φm = 0.2. The transport equations for
these components are

d

dt
〈〈v1v1〉〉 = −2〈〈v1v2〉〉S + 2

(〈〈
f1

τd
u∗1v1

〉〉
−
〈〈
f1

τd
v1v1

〉〉)
, (31)

d

dt
〈〈v1v2〉〉 = −〈〈v2v2〉〉S +

[(〈〈
f1

τd
u∗1v2

〉〉
+

〈〈
f1

τd
u∗2v1

〉〉)
− 2

〈〈
f1

τd
v1v2

〉〉]
. (32)

Based on the results shown in figure 6, production by the mean velocity gradient
plays a significant role (especially during the early times) in the evolution of the
droplet Reynolds stresses. At long times, the production is mostly compensated by
the contribution from the drag, and the Reynolds stresses grow with small rates.
Figure 6 (a) also indicates that the initial growth of 〈〈v1v1〉〉 is largely decreased by the
decorrelation of the fluid and the droplet velocities during the early times (figure 5).
Therefore, sudden changes in the mean velocity gradient significantly affects both the
production and the drag contribution on the right-hand side of (30).

4.2. Thermodynamic fields

The evolution of various thermodynamic fields is considered in this subsection.
Figure 7 shows the temporal variation of the mean internal energy of the carrier
phase. It is observed that the mean internal energy is not sensitive to the droplet size
but is affected by changes in the other parameters. As expected, the largest variations
in 〈EI〉 occur for the case with small initial droplet temperature. In this case, the
mean internal energy of the carrier phase initially decreases due to heat transfer with
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the droplets which are at much smaller temperature than that of the carrier phase.
After the droplets are heated to temperatures close to the carrier-phase temperature,
the mean internal energy of the carrier phase begins to increase with a rate close to
those in other cases.

To assess the relative importance of various mechanisms involved in the change of
the internal energy of the carrier phase we consider the transport equation for 〈EI〉
in homogeneous flows:

∂〈EI〉
∂t

= −〈p∆〉+ ε+
S2

Ref
+ Qd +Hd + Φd +Θd, (33)

where S 2/Ref = 0.008 is the dissipation due to the mean velocity gradient. For the
cases considered here this term has about the same magnitude as ε. It is noted that
this term only appears in the transport equation for the mean internal energy, and
not in the transport equation for the turbulence kinetic energy of the carrier phase.
It represents the effects of the mean velocity gradient on heat and mass transfer.
Since S2/Ref is a positive quantity, it always increases the internal energy (and the
temperature) of the carrier phase, thus enhancing the rate of heat and mass transfer
between the phases.

The dispersed-phase contributions to the mean internal energy of the carrier phase
are expressed as

Qd = −
〈

σ

(γ − 1)M2
fδV

nd∑
md

dTd
dt

〉
, (34)

Hd = −
〈

σ

(γ − 1)M2
fδV

nd∑ dmd
dt

Td

〉
, (35)

Φd =

〈
1

δV

nd∑ f1md

τd
(u∗i − vi)2

〉
, (36)

and

Θd = −
〈

1

δV

nd∑ 1

2

dmd
dt

(u∗i − vi)2

〉
, (37)

where σ = 1 and EI = ρ(T/γ + Y λ)/(γ − 1)M2
f for evaporating droplets. For non-

evaporating droplets md = const., therefore Hd ≡ 0 and Θd ≡ 0. In this case,
Qd represents the convective heat transfer between the two phases, and is exactly
expressed in terms of the Lagrangian ensemble average of the droplet temperature:

Qd = − σ

(γ − 1)M2
f

Φm
d〈〈Td〉〉

dt
. (38)

The term Φd represents the viscous dissipation due to drag. It is noted that
Φd contributes to the change of the internal energy and is distinguished from the
contribution of the drag force to the kinetic energy, Dd. The former is due to the
drag force deforming the fluid elements surrounding the droplet while the latter is
the result of the drag force directly accelerating the fluid. A physical explanation
for Φd follows. In general, the contribution of the fluid stress to the internal energy
is given by τij∂uj/∂xi (Panton 1984), where τij is the stress tensor. For a droplet
moving relative to a fluid, the average stress is given by the drag force per unit area
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of the droplet surface, and ∂uj/∂xi can be approximated by the velocity difference
(u∗i − vi) divided by the thickness of the boundary layer formed around the droplet.
The product of the droplet surface area and the thickness of the boundary layer
is, in fact, the volume within which the dissipation takes place. In accord with the
numerical approximation in which the effects of a droplet on the fluid are modelled
as a source term for the cell containing the droplet, this volume may be substituted by
the cell volume. Therefore, the viscous dissipation due to one droplet is approximated
by the product of the drag force and the local velocity difference (u∗i − vi) divided by
the cell volume. Now, summing over the number of droplets within the cell, Φd takes
the expression given by (36). A Lagrangian relation for Φd is possible by assuming
that there is only a weak correlation between the fluctuations of f1 and (u∗i − vi)2:

Φd ' Φm
〈〈f1〉〉
τd
〈〈(u∗i − vi)2〉〉. (39)

The temporal variations of Qd and Φd are portrayed in figure 8. With the exclusion
of Qd for the case with small initial droplet temperature, the magnitude of both Qd
and Φd varies between zero and 0.007. During the early times, these terms are of
the same order of significance as the dissipation terms in (33); however, contrary to
the dissipation terms, Qd and Φd have opposite signs and tend to cancel each other.
The fact that Φd is of the same order of magnitude as the dissipation rate should
not be overlooked and suggests that this term must be included in the modelling of
two-phase flows. Based on the results shown in figure 8, Φd is only sensitive to the
variations of the droplet time constant and the mass loading ratio. This is expected
as none of the thermodynamic variables (directly) appear in the relation for Φd. The
increase of the mass loading ratio from 0.1 to 0.2 has almost doubled the magnitude
of Φd, suggesting a nearly linear variation with the mass loading ratio for Φd in the
range of small to moderate Φm. Except for a short initial period, the decrease of the
droplet time constant lessens Φd due to the decrease of the relative velocity between
the phases. As expected, Qd is very sensitive to thermodynamic variables. The increase
of the droplet specific heat increases the heat transfer from the carrier phase to the
droplets and results in the increase of Qd. A similar effect is observed for the mass
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loading ratio as the increase of this parameter also increases the total heat transfer
from the carrier phase to the droplets. It is noted that, at long times, Qd becomes
independent of the initial droplet temperature.

More insight into heat transfer between the carrier phase and the droplets is possible
by analysing the variations of the mean temperature difference. Figure 9 shows that
〈〈T ∗ − Td〉〉 is always positive, indicating a net heat transfer from the carrier phase
to the droplets. As was shown earlier, the mean internal energy of the carrier phase
increases in time due to dissipation terms and Φd, therefore the temperature of the
carrier phase is larger than that of the dispersed phase. This creates a net heat transfer
from the carrier to the dispersed phase. It appears that for all of the cases the mean
temperature difference approaches some asymptotic value at long time. Interestingly,
this asymptotic value is independent of the initial temperature difference between
the phases. It shows a small sensitivity to the mass loading ratio and decreases with
the increase of this parameter, due to modifications of the carrier phase by the
droplets in two-way coupling. The decrease of the droplet time constant decreases the
temperature difference as smaller droplets have smaller heat capacity. For a similar
reason, the increase of the droplet specific heat results in the increase of the mean
temperature difference. These trends are similar to those observed for variations of
the mean relative velocity with the droplet time constant in isotropic flows. This is
expected since for a thermal system the heat capacity (the product of the mass and
the specific heat) plays the same role as inertia plays for aerodynamics.

From a modelling standpoint, the r.m.s. of the temperature fluctuation of both the
carrier and the dispersed phases are of great interest as knowledge of these quantities
suffices to determine the mean values for the temperature. The temporal variations
of Trms = (〈(T − 〈T 〉)2〉)1/2 and Tdrms = (〈〈(Td − 〈〈Td〉〉)2〉〉)1/2 are shown in figure 10.
Similarly to the mean temperature difference, the r.m.s. of the temperature fluctuation
approaches asymptotic values at long times. For all of the cases, the r.m.s. fluctuating
temperature of the carrier phase is larger than that of the droplets. This is due
to larger heat capacity of the droplets and is analogous to variations of the r.m.s.
of the droplet velocity with the droplet inertia in isotropic flows. The asymptotic
values of the r.m.s. of the carrier-phase temperature fluctuation are more sensitive
to variations of the mass loading ratio than to variations of the other parameters.
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non-evaporating cases.
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Figure 11. The polytropic coefficient for non-evaporating cases.

The long-time values of the r.m.s. of the droplet temperature fluctuation, however,
appears to be more dependent on the droplet time constant and the droplet specific
heat coefficient. A comparison of the r.m.s. temperature fluctuations for the base case
and the case with small initial droplet temperature indicates that the r.m.s. values
become independent of the initial conditions at long time.

Also of great interest in the modelling of compressible flows is the relation among
the fluctuations of the thermodynamic variables. A common approach is to relate
the fluctuating values of the density, the temperature, and the pressure through a
polytropic coefficient (Rubesin 1976). The local values of the polytropic coefficient,
however, are not well-defined as it is possible that the fluctuating density or the fluc-
tuating pressure independently take zero values. To remove the singularity, Blaisdell
et al. (1993) propose an average value for the polytropic coefficient:

n =
(〈(P − 〈P 〉)2〉)1/2/〈P 〉
(〈(ρ− 〈ρ〉)2〉)1/2/〈ρ〉 . (40)



184 F. Mashayek

τd0 Φm0 λ TB Y0 Td0 Evaporation

1 0.1 0.8 2 0 1 Yes
0.65 0.1 0.8 2 0 1 Yes
1 0.2 0.8 2 0 1 Yes
1 0.1 2 2 0 1 Yes
1 0.1 0.8 5 0 1 Yes
1 0.1 0.8 2 0.1 1 Yes
1 0.1 – – – 1 No

Table 2. Cases considered for the study of evaporating droplets. All of the cases are with two-way
coupling. The base case is shown by boldface.

The temporal variations of n are shown in figure 11. It is observed that after an initial
transient period the polytropic coefficient becomes stationary in time. It shows small
sensitivity to the changes in each of the parameters, although it is more sensitive to
the mass loading ratio. For all of the cases, the asymptotic value of the polytropic
coefficient is between 1.35 and 1.38 which is close to n = γ = 1.4 for an isentropic flow.
The addition of the droplets to the flow always decreases the polytropic coefficient as
the heat transfer between the droplets and the gas takes place at finite temperature
differences. This increases the irreversibilities and causes deviations from an isentropic
flow.

5. Evaporating droplets
A listing of cases considered for the investigation of dispersion and polydisper-

sity of the evaporating droplets is provided in table 2. The significant parameters
for evaporating droplets are the initial droplet time constant (τd0), the initial mass
loading ratio (Φm0), the normalized droplet latent heat of evaporation (λ), the boiling
temperature (TB), the initial vapour mass fraction (Y0, considered to be uniform in
space), and the initial droplet temperature (Td0). The case with Y0 = 0.1 is initialized
in such a way that the initial mean carrier-phase density remains the same as in other
cases (i.e. 〈ρ〉 = 1 at St = 0); the mean density of the gas alone is 0.9 for this case.
For all of the cases in table 2 the initial droplet temperature is the same as that of
the carrier phase (i.e. Td0 = 1). The effects of the initial temperature of the droplets
will be studied separately in § 5.4. All of the cases are with two-way coupling. The
base case here is the same as the one considered in § 4 but for evaporating droplets.
The droplets are injected into the flow at St = 0; however, evaporation starts at
St = 2, after the droplets reach some dynamic equilibrium with the carrier phase. It
is emphasized again that the carrier phase consists of both the gas and the vapour.

5.1. Velocity fields

We begin our discussion on evaporating droplets by considering the temporal varia-
tions of the carrier-phase turbulence kinetic energy shown in figure 12. When analysing
the trends observed in figure 12, it is important to distinguish between k = 1

2
〈ρuiui〉

and the parameter 1
2
〈uiui〉 as the former includes the density effects as well. The

evolution of the turbulence kinetic energy is affected by evaporation in two ways. (i)
Evaporation decreases the mass loading ratio which in turn results in the decrease of
the effects of the drag on the carrier phase. As was observed in § 4.1, during the early
stages of the flow evolution, the drag term tends to act as a dissipation term. Thus,
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Figure 12. The carrier-phase turbulence kinetic energy for evaporating cases.

evaporation decreases the total dissipation and tends to enhance the growth rate of
the turbulence kinetic energy of the carrier phase. This is also true for the velocity
variance 〈uiui〉. (ii) Evaporation results in mass (and kinetic energy) transfer from the
droplets to the carrier phase. This always increases the mass-weighted kinetic energy
as defined in figure 12. However, the velocity variance of the carrier phase may either
increase or decrease depending on the relative magnitudes of the velocities of the
two phases. Since both of the above mechanisms result in the increase of k, it is
not surprising that in figure 12 all of the evaporating cases exhibit larger turbulence
kinetic energies than that of the non-evaporating case.

Further insight into the evolution of the carrier-phase turbulence kinetic energy is
gained by analysing the temporal variations of the droplet source/sink terms in the
transport equation (25) for k. These terms, labelled Dd and Md, represent mechanisms
(i) and (ii) above, respectively. The temporal variations of Dd and Md are shown in
figure 13 for different cases. To assess the significance of these terms, it is instructive
to compare their magnitudes with the magnitude of ∂k/∂t on the left-hand side of
(25). From figure 12 it is estimated that, for 2 < St < 14, ∂k/∂t ' 0.0015 which is of
the same order of magnitude as Dd and Md during the initial times. The results in
figure 13 indicate that Dd and Md are of opposite signs, therefore the kinetic energy
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Figure 13. Rate of change of the carrier-phase turbulence kinetic energy by drag (Dd)
and by mass transfer (Md).

transferred to the carrier phase by the evaporated mass tends to compensate the
effects of the drag of the droplets and the evaporating cases behave more analogously
to the one-way coupling case rather than the non-evaporating two-way coupling
case at the same initial droplet time constant. The relative importance of Dd and Md

directly depends on the rate of evaporation: for cases with small evaporation rate (e.g.
the case with λ = 2.5λb), Md is less significant than Dd. In general, as the evaporation
rate increases the kinetic energy of the carrier phase also increases. A discussion on
the rate of evaporation is provided later in § 5.3.

The presence of the droplets in the carrier phase is expected to affect the anisotropy
of the flow as the droplets are shown to be more anisotropic than the carrier phase.
Figure 14 shows the temporal evolution of the normalized normal Reynolds stresses
of the carrier phase (no sum on Greek indices) for three different cases. A comparison
of the case with two-way coupling for non-evaporating droplets with the one-way
coupling case (Φm = 0) clearly shows that the anisotropy of the carrier phase is
increased by the presence of the droplets. However, it appears that at long times the
rates of change of the normalized stresses are the same for cases with or without
droplets. Evaporation tends to decrease the level of anisotropy (caused by the droplets)
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Figure 14. Anisotropy of the carrier-phase Reynolds stresses.

at long times. This is mainly due to the decrease of the effects of the droplets on the
carrier phase as the mass loading ratio decreases in time.

From the modelling point of view it is always desirable to describe the higher-
order correlations in terms of the lower-order correlations. For instance, the transport
equation for the turbulence kinetic energy of the droplets involves correlations between
the modified droplet time constant and the velocity fluctuations such as 〈〈(f1/τd)u

∗
i vi〉〉.

This correlation may be described in terms of the first- and the second-order moments,
i.e. (〈〈f1〉〉/〈〈τd〉〉)〈〈u∗i vi〉〉, where 〈〈f1〉〉 is calculated using 〈〈Red〉〉 and 〈〈B〉〉. In this manner,
the drag contribution in the droplet kinetic energy equation may be approximated as〈〈

f1

τd

[
(u∗i vj + u∗j vi)− 2vivj

]〉〉
' 〈〈f1〉〉
〈〈τd〉〉

[
(〈〈u∗i vj〉〉+ 〈〈u∗j vi〉〉)− 2〈〈vivj〉〉

]
. (41)

In order to examine (41), in figure 15 we consider the budget of the streamwise
(31) and shear (32) Reynolds stresses of the dispersed phase for a typical case with
τd0 = 1 and Φm0 = 0.2. A very close agreement between the left-hand side (circles)
and the sum of the terms on the right-hand side (solid line) is observed in the figure.
This indicates that the assumption made in (41) is reasonable for practical purposes.
It is also useful to compare the curves in figure 15 to analogous curves presented
earlier in figure 6 for non-evaporating droplets at the same droplet time constant and
mass loading ratio. It appears that the production term does not change significantly;
however, the magnitude of the terms pertaining to drag is greatly increased in time
as a result of the decrease of the droplet size.

5.2. Thermodynamic fields

The temporal evolution of the mean internal energy of the carrier phase (〈EI〉) is
shown in figure 16. For cases with evaporating droplets, 〈EI〉 includes the internal
energies of both the gas and the vapour, and, unlike in non-evaporating cases, it is
not linearly proportional to the temperature of the carrier phase. Figure 16 shows
that the mean internal energy of the carrier phase for evaporating cases is always
larger than that for non-evaporating cases. The increase of the mass loading ratio
or the decrease of the droplet time constant increases the mean internal energy by
increasing the mass of the vapour. A similar argument also applies to figure 16(b)
which shows the effects of the variations of λ, TB , and Y0; the case with higher
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Figure 15. Budgets of (a) the streamwise and (b) the shear Reynolds stresses of the droplets in the
evaporating case with τd0 = 1 and Φm0 = 0.2.

evaporation rate exhibits a higher mean internal energy. Notice that the initial mean
internal energy for the case with Y0 = 0.1 is larger than that for other cases as in this
case a portion of the initial mass of the carrier phase is composed of vapour which
has larger specific enthalpy.

In order to identify the mechanisms by which the droplets most effectively influence
the internal energy of the carrier phase, the budget of the mean internal energy
(equation (33)) is considered. Figure 17 shows the temporal variations of various
terms in (33) for a typical case with τd0 = 1 and Φm0 = 0.2; other cases show
similar trends. After the onset of evaporation (St > 2), the fate of the mean internal
energy is mostly determined by the internal energy transferred by the vapour to the
carrier phase, Hd. For a short period after evaporation begins (2 < St < 4) the term
Qd also plays a significant role. At long times, Qd is very small and the internal
energy generated by small-scale dissipation in the fluid becomes of the same order
of importance as Hd. According to the results shown in figure 17, for evaporating
cases, the dissipation due to the droplet drag (Φd) and the internal energy due to
velocity difference between the two phases (Θd) are small compared to other terms.
Due to the importance of Qd and Hd in analysing the mean internal energy of the
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Figure 16. Mean internal energy of the carrier phase for evaporating cases.

carrier phase, their temporal variations for all of the cases are considered in figure 18.
This figure indicates that, except for a short initial period in the case with λ = 2.5λb,
Hd is consistently larger than Qd for all of the cases. Both terms tend to approach
asymptotic values at long times with Qd approaching very small values for most of
the cases. The case with τd0 = 0.65τd0b exhibits a sharp decrease in Hd at long times
(St > 12.5). This is the only case where (within the simulation time) some of the
droplets are fully evaporated, resulting in a decrease of the vapour production at long
times.

The temporal variations of the mean temperature are shown in figure 19 for both
phases. For all of the cases, a sharp decrease in the droplet mean temperature is
observed immediately after the evaporation begins. This is due to the initial large
difference between the vapour mass fraction at the surface of the droplet (Ys) and
that in the surrounding carrier phase (Y ∗). This difference is positive during the
early times and, as (7) indicates, tends to decrease the droplet internal energy. The
physical interpretation is that initially the droplets are not in equilibrium with the
vapour in their surrounding carrier phase, and a large gradient exists for the vapour
concentration around each droplet. This causes the droplet to evaporate with a high
rate. Since the temperature difference between the two phases is small during this initial
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Figure 19. Mean temperature of the carrier phase and the droplets for evaporating cases.

period the convective heat transfer from the carrier phase to the droplets is not very
effective and the energy required for phase change must be provided by decreasing the
internal energy of the droplets. Once the temperature difference is increased the energy
required for evaporation can be supplied by heat transfer from the carrier phase. In
the meantime, evaporation results in the decrease of the difference between the vapour
mass fraction at the surface of the droplet and that in the carrier phase. Thus, at long
times the first term in the droplet temperature equation (7) is larger than the second
term and the droplet temperature begins to increase. In summary, in the beginning
evaporation is mainly due to the vapour concentration gradient while at long times
it is supported by heat transfer from the carrier phase. This becomes more clear by
considering the ratio of the magnitudes of the convective heat transfer, f2(T

∗−Td)/τd,
and the phase change energy, f3(Ys − Y ∗)/τd, in the droplet energy equation (7). An
examination of the temporal variation of 〈〈f2(T

∗ − Td)〉〉/〈〈f3(Ys − Y ∗)〉〉 indicated
that this ratio starts from small values at St = 2 and then approaches asymptotic
values at long time. Table 3 shows that the asymptotic value is larger than 1 for all
of the cases. Therefore, at long times the heat transfer from the carrier phase to the
droplets is larger than the amount of heat required for phase change and the droplet
temperature increases in time. The largest asymptotic value is obtained in the case
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Case
〈〈f2(T ∗ − Td)〉〉
〈〈f3(Ys − Y ∗)〉〉

base case 1.019
τd0 = 0.65τd0b 1.009
Φm0 = 2Φm0b 1.029
λ = 2.5λb 1.138
TB = 2.5TBb 1.088
Y0 = 0.1 1.040

Table 3. Asymptotic values for the ratio of the convective heat transfer and the heat transfer due
to phase change of the droplets.

with the largest latent heat of evaporation. This is due to significant decrease of the
evaporation rate in this case.

An inspection of the r.m.s. of the temperature fluctuations (not shown) for both
phases indicated that, similarly to non-evaporating cases, the r.m.s.-temperature fluc-
tuation of the carrier phase is larger than that of the droplets for all of the cases.
Evaporation results in an increase of Trms while decreasing Tdrms. Also, Trms is rather
insensitive to the droplet time constant or the mass loading ratio while Tdrms slightly
increases with the decrease of the droplet time constant. As expected, the r.m.s. fluc-
tuating temperatures of both phases depend on the variations of the thermodynamic
variables: Trms decreases with the increase of λ or TB while opposite trends are
observed for Tdrms.

5.3. Evaporation rate

An important issue in the study of evaporating droplets is the evaporation rate as
identified by the rate of change of the mean-squared droplet diameter (〈〈d2

d〉〉/d2
d0).

The temporal variations of 〈〈d2
d〉〉/d2

d0 are shown in figure 20 for different cases. It is
observed that during the early stages of evaporation (2 < St < 4) the evaporation
rate is nonlinear. This is due to the fact that during this time evaporation is controlled
by the vapour concentration gradient as discussed in § 5.2. At long times, the droplets
come to an equilibrium with the vapour mass fraction in the surrounding fluid and
the rate of evaporation approaches a relatively constant value. Therefore, the long-
time evaporation rate is expected to be more in agreement with the classical d2-law
(Williams 1985). The magnitude of the evaporation rate is, however, dependent on
different parameters which is discussed below.

Figure 20(a) shows that the decrease of the droplet time constant increases the
evaporated mass of the droplets. Equation (8) indicates that the rate of change
of d2

d/d
2
d0 is inversely proportional to d2

d0. Therefore, with the increase of τd, the
evaporation rate decreases and so does the evaporated mass of the droplets. The
physical explanation is that smaller droplets have a larger surface to volume ratio
than larger droplets. Since the evaporated mass is proportional to the surface area,
the smaller droplets evaporate more mass per unit volume. Figure 20(a) also shows
that the increase of the mass loading ratio decreases the relative (to initial mass)
evaporated mass of the droplets. This is due to the increase of the vapour mass
fraction (Y ) as the absolute evaporated mass increases with the increase of the mass
loading ratio. Consequently, (Ys − Y ∗), which determines the rate of evaporation
(see equation (8)), decreases and individual droplets evaporate with smaller rates.
The increase of λ can be interpreted as the increase of the droplet latent heat of
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evaporation and, as shown in figure 20(b), delays the evaporation process. This is also
evident from (13) which indicates a decrease in Ys, and therefore the evaporation rate,
with the increase of λ. The increase of the boiling temperature also decreases Ys, thus
resulting in the decrease of the evaporation rate. Finally, the increase of the initial
vapour mass fraction decreases the difference (Ys − Y ∗) and the evaporation rate.

The results presented in figure 20(a) suggest that the rate of evaporation is higher for
smaller droplets. To provide more evidence for this observation, in figure 21 we con-
sider the joint probability density function (p.d.f.) of the droplet time constant and the
evaporation rate for the base case at St = 12. Both of these variables are normalized
with their respective mean values at St = 12. The figure shows that for each droplet
time constant there is a range of possible evaporation rates. However, the skewness
of the p.d.f. indicates that smaller droplets exhibit higher probabilities of experiencing
high evaporation rates than larger droplets do. It is also noted that the highest p.d.f.
values belong to droplets of moderate sizes having moderate rates of evaporation.

It is well established that droplets (with moderate sizes) tend to escape from high-
vorticity regions and to collect in the regions of the flow with high strain rates (Wang &
Maxey 1993; Eaton & Fessler 1994). However, it is not yet clear how the evaporation
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Figure 21. Joint p.d.f. of the evaporation rate and the droplet time constant at
St = 12 for the base case.

rate is affected by the flow structure. Here, the DNS results are utilized to address
this issue. A convenient parameter for distinguishing various regions in the flow is

IId ≡ − 1
2

(
∂ui

∂xj

∂uj

∂xi

)
= − 1

2

(
ξ2 − 1

4
ωiωi

)
, (42)

where ξ2 denotes the the magnitude of the strain-rate tensor. In incompressible flows,
IId represents the second invariant of the deformation tensor, ∂ui/∂xj , (see e.g. Squires
& Eaton 1990). For a compressible flow, IId does not have an analogous physical
significance; however, it may still be used for flow characterization as the negative
and positive values of IId correspond to high strain rate and high vorticity regions of
the flow, respectively. It must be emphasized that the parameter IId is defined based
on fluctuating velocities, and does not take into account the large-scale motions due
to mean shear. Since the droplets have the same mean velocity as that of the car-
rier phase, they simply follow these large-scale motions, and only turbulent motions
contribute to the preferential effects of the flow on the droplets.

Figure 22 shows contours of the joint p.d.f. of the evaporation rate (normalized
with its mean value) and IId (normalized with its r.m.s. value) for the base case and
the case with τd0 = 0.65τd0b. The p.d.f. is calculated using the interpolated values
of IId at the droplet location. In order to eliminate the effects of the droplet size
variations on the evaporation rate, these joint p.d.f.s are calculated at the onset of
evaporation (St = 2) when the droplets still have identical sizes. In the figure, the
joint p.d.f. takes the highest value on the innermost contour and decreases towards
the outermost contour. Figure 22 clearly shows that, for both cases, the p.d.f.s are
skewed such that the probability of finding higher evaporation rates is larger in the
high strain rate (negative IId) regions of the flow than in the high vorticity (positive
IId) regions. Therefore, not only do the droplets tend to collect in the high strain rate
regions of the flow, they also exhibit higher evaporation rates in these regions. As a
result, the overall effect is to expedite the evaporation process.

To further elaborate on this issue, we assess the effects of the parameters that
directly influence the evaporation rate. By manipulating (8), it is easy to show that
dτd/dt ∝ ρ∗(2 + 0.6Re0.5

d Sc
0.33)(Ys − Y ∗). At St = 2, Y ∗ is the same for all of the

droplets, thus, the evaporation rate depends on Red, Ys, and ρd, where Ys is a function
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Φm0 = 2Φm0b at (a) St = 4; contour levels from 0.8468 to 12.701 with increment of 1.6935, and (b)
St = 14; contour levels from 0.2273 to 3.4088 with increment of 0.4545. The highest value belongs
to the innermost contour.

of the droplet temperature and increases with the increase of this parameter. Figure 23
shows contours of the joint p.d.f.s of each of these parameters and IId, for the case
with τd0 = 0.65τd0b; other cases indicated similar trends. The figure shows that the
joint p.d.f.s are skewed towards the high strain rate regions of the flow for larger
values of each of these parameters. However, the largest skewness is observed for the
droplet Reynolds number which is more directly influenced by the velocity field. This
suggests that a similar phenomenon should be observed for incompressible flows with
either one- or two-way coupling with droplets.

To investigate the effects of the flow structure on the distribution of vaporizing
droplets, in figure 24 contours of the joint p.d.f. of IId and the droplet time constant
are considered at St = 4 and St = 14 for the case with Φm0 = 2Φm0b. The droplet
time constant is normalized with the Kolmogorov time scale since the ratio of the
two is the most appropriate parameter to characterize the effects of the preferential
distributions. In turbulent flows generated via DNS, the largest effect of preferential
distribution is observed for droplet time constants of the order of the Kolmogorov
time scale (Wang & Maxey 1993). Figure 24 shows that, at any droplet time constant,
there is a higher probability of finding droplets in the high strain rate regions than
there is in the high vorticity regions of the flow. However, there is no definite indication
that any particular size of the droplets is more influenced by preferential distribution
effects than other sizes are. This is probably due to the small range of size variation
within each group of droplets. Nevertheless, a comparison of figures 24(a) and 24(b)
indicates that as the average droplet time constant becomes closer to the Kolmogorov
time scale, the probability of finding droplets in high vorticity regions of the flow
decreases. This is in agreement with previous observations for solid particles.

5.4. Effects of the initial droplet temperature

Thus far in this section we have discussed evaporation characteristics when initially
the droplets have the same temperature as that of the carrier phase. With this
initial condition imposed for the droplet temperature, the early stages of evaporation
are mainly controlled by the vapour concentration gradient around the droplet. In
practice, however, there are situations where the temperature difference between the
two phases is not negligible. It is expected that in these situations the evaporation
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τd0 Φm0 λ TB Y0 Td0 Evaporation

1 0.1 0.8 2 0 0.2 Yes
1 0.1 2 2 0 0.2 Yes
1 0.1 0.8 5 0 0.2 Yes

Table 4. Cases considered to study the effects of the initial droplet temperature.
The base case is shown by boldface.

process is more strongly dictated by the convective heat transfer between the phases
rather than by the vapour concentration gradient. In order to address this issue, in
this subsection we consider three cases with initial droplet temperature of Td0 = 0.2.
Another important issue to be addressed by this study is whether or not the effects of
the initial droplet temperature on the statistics vanish at long times. Table 4 provides
a listing of cases considered in this subsection. Notice that these cases are similar to
cases considered in table 2, and the only difference is in the magnitude of the initial
droplet temperature. For these cases also evaporation starts at St = 2.

Figure 25 shows the temporal variations of the mean and the r.m.s. fluctuating
temperature for both phases. During the pre-evaporation period (St < 2) the mean
droplet temperature significantly increases as a result of the convective heat transfer
from the carrier phase; at the onset of evaporation (St = 2) the mean temperature
difference 〈〈T ∗−Td〉〉 = 0.235 for all of the cases. After evaporation begins, figure 25(a)
indicates that the increase of either λ or TB increases the mean temperature of both
phases. This is in agreement with the trends observed in figure 19 for cases with
Td0 = 1. Figure 25(b) shows that at long times, both Trms and Tdrms approach
stationary values. A comparison of these results with those for cases with Td0 = 1
revealed that the asymptotic values are very close. This suggests that the effects of
the initial droplet temperature on long-time values of both Trms and Tdrms are rather
insignificant.

In figure 26 we show the variations of the rate of change of the droplet diameter
squared, which is an indication of the evaporation rate, for both Td0 = 0.2 and
Td0 = 1. As expected, during the early stages of evaporation, the evaporation rate
is greatly influenced by the decrease of Td0. At long times, the evaporation rate
approaches asymptotic values for both of the initial droplet temperatures. However,
the asymptotic values in cases with Td0 = 0.2 are smaller than those in cases with
Td0 = 1. The lower evaporation rates for cases with small initial droplet time constant
are attributed to the smaller mean droplet temperature. This decreases the vapour
mass fraction on the surface of the droplet which, in turn, results in the decrease of
the evaporation rate as indicated by (8).

More insight into the evaporation mechanism is gained by examining the quantity
〈〈f2(T

∗−Td)〉〉/〈〈f3(Ys−Y ∗)〉〉. As was mentioned earlier in § 5.2, this quantity represents
the ratio of the convective heat transfer and the phase change energy in the droplet
energy equation. The temporal variations of this ratio are shown in figure 27 for both
small and large initial values of the droplet temperature. It is observed that in cases
with small initial droplet temperature 〈〈f2(T

∗ −Td)〉〉/〈〈f3(Ys−Y ∗)〉〉 starts from large
values. This is expected as when the initial droplet temperature is low the convective
heat transfer is dominant. It is also due to small values of Ys which decreases the
evaporation rate and, consequently, the phase change energy. In general, figure 27
shows that the early stages of evaporation are dominated by convective heat transfer
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Figure 25. Temporal variations of (a) the mean and (b) the fluctuating temperature of the carrier
phase and the droplets for evaporating cases with Td0 = 0.2.

in the case with small initial droplet temperature, whereas in the case with large initial
droplet temperature the phase change mechanism is more effective. At long times, all
of the cases approach asymptotic values which are somewhat dependent on the initial
droplet temperature.

The variations of the droplet temperature significantly affects the vapour mass
fraction on the surface of the droplet (Ys) as well as the carrier-phase density at
the droplet location (ρ∗). Therefore, it may be expected that the decrease of the
initial droplet temperature should have a significant influence on the variation of the
evaporation rate in various regions of the flow. However, contours of the joint p.d.f.
of the normalized evaporation rate and IId (shown in figure 28 for the base case at
St = 2) suggest that this is not the case. In fact, comparisons of the joint p.d.f.s of
Red, Ys, or ρd, and IId indicated that in this case also the droplet Reynolds number
has the largest effect on the variations of the evaporation rate. This, again, suggests
that the velocity field is more influential in preferential variations of the evaporation
rate than are the thermodynamic fields.
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6. Summary and concluding remarks
An extensive DNS study is carried out of the dispersion and polydispersity of

droplets in low-Mach-number homogeneous turbulent shear flows. A study of large
compressibility effects is not intended, and the mean turbulent Mach number is less
than 0.2. The effects of density variations, however, are fully considered by solving the
equations of the compressible flow. Cases with one- and two-way coupling are consid-
ered for either non-evaporating or evaporating droplets. The formulation presented
in § 2 includes all modes of mass, momentum, and energy transfer between the two
phases (in the limit of small volume fractions) – radiation heat transfer is neglected.
The gravity effects are not considered as the numerical methodology is only applicable
in the absence of gravity. The carrier phase (composed of the gas and the vapour) is
described in the Eulerian frame and the droplets are tracked in a Lagrangian manner.

In the study of non-evaporating droplets, the effects of the droplet time constant,
the mass loading ratio, the droplet specific heat, and the initial droplet temperature
on the velocity and thermodynamic fields are examined. The kinetic energy of the
carrier phase decreases with the increase of the mass loading ratio, or the increase
of the droplet time constant. It also decreases with the decrease of the droplet initial
temperature but is insensitive to the variations of the droplet specific heat. These
trends are explained by considering the budget of the carrier-phase turbulence kinetic
energy. The pressure–dilatation correlation contributes most to the decrease of the
kinetic energy with the decrease of the initial droplet temperature. The droplet time
constant and the mass loading ratio are shown to influence the carrier-phase kinetic
energy mostly through drag. The droplet streamwise velocity variance is larger than
the fluid one and the ratio of the two increases with the increase of the droplet
time constant. This is in agreement with recent theories in homogeneous shear flows;
however, it is the opposite of the trends observed in isotropic flows. An examination
of the budget of the droplet streamwise velocity variance indicates that the production
by the mean droplet velocity gradient is responsible for this phenomenon.

The budget of the mean internal energy of the carrier phase is also carefully
examined in order to assess various mechanisms for the exchange of the internal
energy between the phases. As expected, the mean internal energy has the largest
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variations when the initial droplet temperature is decreased. This is due to the increase
of the convective heat transfer from the carrier phase to the droplets. For cases in
which the droplets initially have the same temperature as that of the carrier phase, the
internal energy generated due to the dissipation of the kinetic energy by drag (Φd) is of
the same order of importance as the convective heat transfer. The mean temperature
difference between the phases and the r.m.s. of the fluctuating temperatures of both
phases approach asymptotic values at long times. These asymptotic values seem to
be independent of the initial droplet temperature.

A similar study is conducted for the evaporating droplets in which the effects of
the initial droplet time constant, the initial mass loading ratio, the droplet latent
heat of evaporation, the boiling temperature, the initial vapour mass fraction, and
the initial droplet temperature are considered. The trends observed for the variations
of the turbulence kinetic energy of the carrier phase are different than those in the
non-evaporating cases. This is mainly due to the kinetic energy carried to the carrier
phase by the vapour. An examination of the budget of the turbulence kinetic energy
has revealed that this energy transfer is of the same order of importance as the energy
exchange by drag. It is also shown that evaporation decreases the level of anisotropy
of the flow that is caused by the droplets.

The mean internal energy of the carrier phase is significantly increased by evap-
oration. This is again due to the transfer of energy from the droplets to the carrier
phase by the vapour. This effect is more visible for the mean internal energy than
it is for the turbulence kinetic energy as (for the parameter ranges considered here)
the specific internal energy of the vapour is always larger than that of the gas at
the same temperature. The variations of the mean temperatures of both phases are
explained by discussing the evaporation mechanism. It is shown that, when the initial
temperature difference between the phases is negligible, the evaporation is controlled
by the vapour concentration gradient around the droplets. This results in a sharp
decrease of the mean temperature of the droplets during the early times. When the
initial droplet temperature is significantly lower than that of the carrier phase, evap-
oration is mostly dictated by convective heat transfer. The decrease of the initial
droplet temperature also has a major impact on the evaporation rate during the early
times. The small values of the droplet temperature decrease the vapour mass fraction
on the surface of the droplet and result in substantial decrease of the evaporation
rate. The long-time values of the evaporation rate, however, show smaller sensitivity
to the initial droplet temperature. An examination of the r.m.s. of the temperature
fluctuations of the carrier phase and the droplets for evaporating cases with differ-
ent initial droplet temperatures indicates that the long-time values of this parameter
become independent of the initial conditions.

The effects of the flow structure on the dispersion of the droplets and the evap-
oration rate are studied by considering the joint p.d.f.s of various parameters. The
smaller droplets experience higher evaporation rates, mainly due to larger surface
area to volume ratios. It is shown that the droplets residing in high strain rate regions
of the flow exhibit higher evaporation rates. A study of the parameters influencing the
evaporation rate indicates that the droplet Reynolds number is the most influential
parameter for this preferential behaviour. Similarly to previous findings in the disper-
sion of solid particles, it is observed that evaporating droplets tend to preferentially
collect in high strain rate regions of the flow. Therefore, the overall effect of the flow
structure is to expedite the evaporation process.

This DNS study aids to improve our state of knowledge on interactions between
the droplets and turbulence in homogeneous shear flows. One may also be interested
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in using the data generated by these direct simulations to validate turbulence models
developed for two-phase flows. While this approach has been successfully adopted
in incompressible flows (Mashayek, Taulbee & Givi 1997b; Mashayek, Taulbee &
Givi 1998a, b), it must be mentioned that certain limitations apply to the current
compressible flow results. These are mainly due to the small Reynolds numbers
produced in these simulations. The study by Blaisdell et al. (1991) has shown that,
even in compressible flows at higher Reynolds numbers than those considered here,
the available turbulence models (for single-phase flows) perform unsatisfactorily. In
particular, the pressure–strain correlation models and the assumption of isotropic
dissipation, which are the cornerstones of any statistical turbulence modelling, do not
seem to comply with the results of these simulations. Therefore, before any attempt
is made to test the two-phase flow models, one has to make sure that the single-phase
flow is modelled with reasonable accuracy.

Computational resources for this work were in part provided by the Pittsburgh
Supercomputing Center and the College of Engineering Computer Facility at the
University of Hawaii at Manoa.

REFERENCES

Balachandar, B. & Maxey, M. R. 1989 Methods for evluating fluid velocities in spectral simulations
of turbulence. J. Comput. Phys. 83, 96–125.

Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 1960 Transport Phenomena. Wiley.

Blaisdell, G. A., Mansour, N. N. & Reynolds, W. C. 1991 Numerical simulation of compress-
ible homogeneous turbulence. Department of Mechanical Engineering Rep. TF-50. Stanford
University, Stanford, CA.

Blaisdell, G. A., Mansour, N. N. & Reynolds, W. C. 1993 Compressibility effects on the growth
and structure of homogeneous turbulent shear flow. J. Fluid Mech. 256, 443–485.

Corrsin, S. 1961 Turbulent flow. Am. Scientist 49, 300–324.

Crowe, C. T., Sharma, M. P. & Stock, D. E. 1977 The Particle-Source in cell (PSI-Cell) model for
gas-droplet flows. Trans. ASME I: J. Fluids Engng 6, 325–332.

Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J.
Multiphase Flow Suppl. 20, 169–209.

Elghobashi, S. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying
isotropic turbulence. J. Fluid Mech. 242, 655–700.

Elghobashi, S. & Truesdell, G. C. 1993 On the two-way interaction between homogeneous
turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids 5, 1790–
1801.

Faeth, G. M. 1983 Evaporation and combustion in sprays. Prog. Energy Combust. Sci. 19, 1–76.

Faeth, G. M. 1987 Mixing, transport and combustion in sprays. Prog. Energy Combust. Sci. 13,
293–345.

Givi, P. & Madnia, C. K. 1993 Spectral methods in combustion. In Numerical Modeling in Com-
bustion (ed. T. J. Chung), chap. 8, pp. 409–452. Taylor & Francis.

Hinze, J. O. 1972 Turbulent fluid and particle interaction. In Progress in Heat and Mass Transfer
(ed. G. Hetsroni), vol. 6, pp. 433–452. Pergamon.

Jackson, R. & Davidson, B. J. 1983 An equation set for non-equilibrium two phase flow, and
an analysis of some aspects of choking, acoustic propagation, and losses in low pressure wet
steam. Intl J. Multiphase Flow 9, 491–510.

Kida, S. & Orszag, S. A. 1990 Energy and spectral dynamics in forced compressible turbulence.
J. Sci. Comput. 5, 85–125.

Kida, S. & Orszag, S. A. 1992 Energy and spectral dynamics in decaying compressible turbulence.
J. Sci. Comput. 7, 1–34.

Lee, S., Lele, S. K. & Moin, P. 1991 Eddy shocklets in decaying compressible turbulence. Phys.
Fluids A 3, 657–664.



Droplet–turbulence interactions in two-phase flows 203

Liljegren, L. M. 1993 The effect of a mean fluid velocity gradient on the streamwise velocity
variance of a particle suspended in a turbulent flow. Intl J. Multiphase Flow 19, 471–484.

Mashayek, F. 1998 Direct numerical simulations of evaporating droplet dispersion in forced low
Mach number turbulence. Intl J. Heat Mass Transfer (in press).

Mashayek, F., Jaberi, F. A., Miller, R. S. & Givi, P. 1997a Dispersion and polydispersity of
droplets in stationary isotropic turbulence. Intl J. Multiphase Flow 23, 337–355.

Mashayek, F., Taulbee, D. B. & Givi, P. 1997b Modeling and simulation of two-phase turbulent
flow. In Propulsion Combustion (ed. G. D. Roy), chap. 8, pp. 241–280. Taylor & Francis.

Mashayek, F., Taulbee, D. B. & Givi, P. 1998a Particle-laden turbulent flows. Part 1. Direct
simulations and Reynolds stress closures. J. Fluid Mech. (submitted).

Mashayek, F., Taulbee, D. B. & Givi, P. 1998b Particle-laden turbulent flows. Part 2. Explicit
algebraic closures. J. Fluid Mech. (submitted).

McLaughlin, J. B. 1989 Aerosol particle deposition in numerically simulated channel flow. Phys.
Fluids A 1, 1211–1224.

Miura, H. & Kida, S. 1995 Acoustic energy exchange in compressible turbulence. Phys. Fluids A
7, 1732–1742.

Panton, R. L. 1984 Incompressible Flow. John Wiley & Sons.

Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the
turbulent regime. J. Fluid Mech. 181, 441–466.

Reeks, W. M. 1993 On the constitutive relations for dispersed particles in nonuniform flows. I:
Dispersion in a simple shear flow. Phys. Fluids A 5, 750–761.

Riley, J. J. & Patterson, G. S. 1974 Diffusion experiments with numerically integrated isotropic
turbulence. Phys. Fluids 17, 292–297.

Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence. NASA Tech. Mem. 81315.

Rubesin, M. W. 1976 A one-equation model of turbulence of use with the compressible navier-stokes
equations. NASA Tech. Mem. X-73, 128.

Samimy, M. & Lele, S. K. 1991 Motion of particles with inertia in a compressible free shear layer.
Phys. Fluids A 3, 1915–1923.

Sarkar, S. 1992 The pressure-dilatation correlation in compressible flows. Phys. Fluids 4, 2674–2682.

Sarkar, S. 1994 The stabilizing effect of compressibility in turbulent shear flow. ICASE Rep. 94-46.
NASA Langley Research Center, Hampton, VA.

Sarkar, S., Erlebacher, G. & Hussaini, M. Y. 1991 Direct simulation of compressible turbulence
in a shear flow. ICASE Rep. 91-29. NASA Langley Research Center, Hampton, VA.

Sarkar, S., Erlebacher, G. & Hussaini, M. Y. 1992 Compressible homogeneous shear: Simulation
and modeling. ICASE Rep. 92-6. NASA Langley Research Center, Hampton, VA.

Simonin, O., Deutsch, E. & Boivin, M. 1995 Large eddy simulation and second-moment closure
model of particle fluctuating motion in two-phase turbulent shear flows. In Turbulent Shear
Flows 9 (ed. F. Durst, N. Kasagi, B. E. Launder, F. W. Schmidt & J. H. Whitelaw), pp. 85–115.
Springer.

Squires, K. D. & Eaton, J. K. 1990 Particle response and turbulence modification in isotropic
turbulence. Phys. Fluids A 2, 1191–1203.

Squires, K. D. & Eaton, J. K. 1991a Measurements of particle dispersion obtained from direct
numerical simulations of isotropic turbulence. J. Fluid Mech. 226, 1–35.

Squires, K. D. & Eaton, J. K. 1991b Preferential concentration of particles by turbulence. Phys.
Fluids A 3, 1169–1178.

Squires, K. D. & Eaton, J. K. 1994 Effect of selective modification of turbulence on two-equation
models for particle-laden turbulent flows. Trans. ASME I: J. Fluids Engng 116, 778–784.

Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. (2) 20, 196–211.

Truesdell, G. C. & Elghobashi, S. 1994 On the two-way interaction between homogeneous
turbulence and dispersed solid particles. II: Particle dispersion. Phys. Fluids 6, 1790–1801.

Wallis, G. B. 1969 One Dimensional Two Phase Flow. McGraw Hill.

Wang, L-P. & Maxey, M. R. 1993 Settling velocity and concentration distribution of heavy particles
in isotropic turbulence. J. Fluid Mech. 256, 27–68.

Williams, F. A. 1985 Combustion Theory, 2nd Edn. Benjamin/Cummings.

Yeung, P. K. & Pope, S. B. 1988 An algorithm for tracking fluid particles in numerical simulations
of homogeneous turbulence. J. Comput Phys. 79, 373–416.


